报告人:重庆大学穆春来教授
题目: On the initial value problem for the hyperbolic Keller-Segel equation in the Besov framework
主持人:王锦荣 教授
时间:2022年8月8日 星期一 10:00-11:00
腾讯会议ID:558-227-649
摘要: In this talk, we first show by constructing a special initial data that the solution map for the one dimensional hyperbolic Keller-Segel equations (HKSE) starting from $u_0$ is discontinuous at $t=0$ in the metric of $B_{2,\infty}^{s}(\mathbb{R})$, $s>\frac{3}{2}$. Then, we establish the Hadamard local well-posedness result for the high dimensional HKSE in the larger Besov spaces $ B_{p,1}^{1+\frac{d}{p}}(\mathbb{R}^d)$, $1\leq p <\infty$. Moreover, we investigate the inviscid limit of the Keller-Segel equations with small diffusivity $\epsilon\Delta u$ as $\epsilon\rightarrow 0$ in the same topology of Besov spaces as the initial data. Finally, we establish two kinds of blow-up criteria for strong solutions in Besov spaces by means of the Littlewood-Paley theory. This is a joint work with Shouming Zhou, Lei Zhang and Simin Zhang
报告人简介:穆春来教授现任重庆大学我院院长,博士生导师,中国数学会理事,重庆市数学会副理事长,主要从事非线性偏微分方程、生物数学和图像处理理论和应用研究。2005年入选“教育部新世纪优秀人才”计划,2008入选重庆市学术与技术带头人。先后承担了多项国家自然科学基金、教育部新世纪优秀人才基金、教育部优秀年轻教师基金、重庆市自然科学重点基金项目。2015年获得重庆市自然科学奖二等奖一项;2014年获得国家教学成果二等奖一项。已在“Math Mod Meth Appl. Sci”、“J. Diff. Equs”、“J. Nonlinear Sci.”、“Proc. Roy. Soc. EdinghSec. A”、“Dis. Contin. Dyn. Syst.”、“Z. Angew. Math. Phys”等国内外重要数学期刊发表论文200余篇。