Heteroclinic bifurcation in a quasi-periodically excited rigid rocking block with two frequencies
报告人:
杜正东 教授 (四川大学)
报告时间:
2022年11月11日(星期五)上午10:00—11:30
腾讯会议:
腾讯会议ID:656-131-868
报告摘要:Heteroclinic bifurcation in a nonlinear rigid rocking block under external quasi-periodic excitation with two frequencies is investigated. By using the method of Melnikov type, we derive sufficient conditions under which the perturbed stable and unstable manifolds of the heteroclinic orbits intersect transversally. Then a complete description of the bifurcation sets and the chaotic zones in the parameter space are presented. Numerical simulations are performed for parameters chosen from the chaotic zones. The chaotic motions of the systems are verified by computing the largest Lyapunov exponent of the system.
报告人简介:杜正东, 2000年获美国纽约州立大学布法罗分校博士学位, 现任四川大学数学学院教授、博士生导师,四川大学教学名师,研究方向为微分方程与动力系统。先后主持国家自然科学基金面上项目、教育部留学回国人员基金等多个项目。现为美国《Mathematical Reviews》评论员。 已在Physica D, Nonlinear Analysis Ser. A, Int. J. of Non-linear Mechanics, Nonlinear Dynamics等重要学术期刊上共发表论文近40篇。